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Mass transfer in a solid material with a phase transformation is examined with 
the change in size and diffusion displacement of the new phase particles taken 
into account. A closed system of equations is obtained in a quasistationary 
approximation to describe these processes. 

i. Mass transfer processes in heterogeneous media are often accompanied by phase and 
chemical transformations proceeding on surfaces distributed in a continuous matrix of fo- 
reign particles of the dispersed phase. The physical nonlinearity is essential here that 
consists of the effective transfer characteristics being dependent on the properties of the 
medium and, particularly, on the particle size and concentration that the transformation 
affects, and the kinetics of this latter depends on the rate of diffusion exchange between 
the matrix and the particles. 

The processes mentioned are ordinary for metastable heterogeneous media in which con- 
densation or crystallization, evaporation, dissolution, reconstruction of the crystal lat- 
tice or the formation of new chemical compounds on the particle surfaces occurs. In applied 
respects they are apparently especially important for the chemicothermal treatment of metals 
and other solid materials with a heterogeneous structure whose singularities determine their 
structural properties to a considerable extent [i, 2]. 

The presence of a heterogeneous transformation on particle surfaces changes the physical 
pattern of the diffusion process radically as compared with diffusion in the same medium 
with particles inert with respect to the diffusing substance, which is related to spoilage 
of the continuity of the concentration and the normal component of the flux of this substance 
on the mentioned surfaces and, respectively, to the appearance of sources and sinks on them, 
as well as to the influence of changes in the particle size and their diffusion motion due 
to the transformation [3]. The general principles for describing mass transfer with surface 
discontinuities and sources taken into account were examined in [4] and applied to an anaz 
lysis of diffusion in the gaps between nonconducting particles in [5]. The presence of sure 
face sources or sinks specifies the appearance of certain effects that are also specific for 
heat transfer processes [6]. However, the dependence of the particle size on time and the 
diffusion displacement of the dispersed phase are generally neglected in these investiga- 
tions. This is allowable say, for an analysis of transport in granular systems with adsorp- 
tion or by heterogeneous catalytic reactions but can result in errors in important problems 
on the transfer and kinetics of phase transformations in the diffusion zone [1-3]. 

For definiteness, solid disperse systems with a fixed matrix are examined in this paper. 
However, the particles can undergo diffusion displacement, whose influence on the kinetics 
of mass transfer and heterogeneous transformation is comparable to the influence of a change 
in the particle size in the general case. As in [4-6], the analysis is performed within the 
framework of a model of a moderately concentrated system, which corresponds to neglecting 
non-overlappability and correlations in the arrangement of adjacent particles generally. 
Utilization of this model for system of high concentration is justified to a definite extent 
by the possibility of a real merger of particles growing out of closely arranged seeds [7]. 
For simplification the particles are considered spherical while the dispersed phase is lo- 
cally monodisperse, characterized by a constant numerical concentration of particles n within 
the limits of the whole volume under consideration. It is also assumed that there are no 
chemical reactions, and therefore, no distributed sources or sinks, while the diffusion and 
heterogeneous transformation processes proceed under isothermal-isobaric conditions. 
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In conformity with the method in [4], the equations for the mean concentrations c o and 
c~ in the continuous and dispersed phases are obtained as a result of taking the average 
over an ensemble of configurations of particle systems of a detailed mass conservation equa- 
tion 

OC/Ol -J- V (VC) =- - -  vQ, Q = - -  ~)  vC, 

multiplied by 00 and i - 01, where the structural functions are 

{001= 
with subsequent passage to the limit 60 ~ ~l * 0. Summation here is over all particles with 
radii aj and centers at the points Rj, q(x) is the Heaviside function, and C, V, Q and ~ are 
understood to be generalized functions, continuous in both phases but having discontinuities 
on the particle surfaces. 

Averaging of the detailed equation is performed completely analogously to that in [4] 
with utilization of the relationships 

o i  % , ' d /  , ' + 

{Oo}___En~(aj._]_ { _ , 5 O } _ l R _ R i i ) ,  n j _  R--R; , w j =  dR, 
V O~ , 6, . j R - -  R j ~  d- -~-  ' 

where 6(x) = dq(x)/dx is the Dirac delta function. It should be taken into account during 
the averaging that the detailed velocity V is identically zero in the gaps between the par- 
ticles, and within each particle should be considered as a homogeneous vector equal to the 
velocity wj of the diffusion motion of this particle. From the assumption n = const and the 
evident conservation equation 3n/~t + 7(wn) = 0 there follows that the vector field w(t, R) 
of the mean velocity of the dispersed phase should be solenoidal Vw = 0. After taking the 
average we arrive at the equations 

0 (eco)/Ot + m + ,go = - -  vq + u + h, 

0 (pcO/Ot + w v  (OcO - -  gx = - -  u, p + ~ = 1, 
(1) 

where we introduced the notation 

t p * t f m ----- n w n codR , go,l  = n 
IR'--RI=a IR'--RI=a 

t,t = n VqldR ,, 
[R'--RI<a 

q = - -  DoV (eCo + 9cl) - -  (Dx - -  Do) n ( 

f , q - D o n  , ( C o - -  * ' ' c ~ ) n d R ,  h = n  
IR'--RI~a 

d a t  , t 
Co, lclR , 

Ot 

(R'--~RI<a 

C (q*- qb.'ar'. 
IR'--R[=a 

(2) 

The integration here is over the positions R' of the center of the ~xtracted (trial) parti- 
cle such that the point R lies on its surface or within it, n' is the unit vector of the ex- 
ternal normal on this surface and the superscript asterisk denotes the conditional mean ob- 
tained by taking the average over the ensemble of configurations in which the position of 
the center of the trial particle is given a priori at the point R'. The quantities a and w 
as well as p = (4~/3)a3n and e are considered as fields, i.e., as functions of t and R and 
the primes in the notation show that the corresponding quantities are evaluated at the point 
R'. The constancy of n was taken into account in writing (2). Taking account of the diffu- 
sion motion and changes in the particle sizes due to the heterogeneous transformation results 
therefore in the appearance of original new convective terms in tha left sides of (I). 

To close the system (I), the quantities (2) must be expressed in the form of certain 
functions (or functionals) of the unknowns c o and e I of this system. Naturally such expres- 
sions should be found in strict conformity with the relationships following from the repre: ~ 
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sentations (2), which comprises the content of the necessary condition for the self-consis- 
tency of the theory. To obtain such relationships it is necessary to find the conditional 
means Co.*, c~* as well as the appropriate diffusion fluxes q* and qz*, i.e., to solve the 
problem of perturbations induced in the mean concentration field of the trial particle under 
consideration [4-6]. 

2. Within the framework of the model of a moderately concentrated system used here, 
the equation for the field Co* outside the trial particle is assumed to agree with the first 
equation in (i) in formula while within it the ordinary diffusion equation is considered 
valid [4]. Correspondingly, cl* and qz* = D17ci* have the meaning of mean concentration and 
diffusion flux in this particle. In a coordinate system connected with the center of the 
trial particle these equations are written thus 

COCo~Or = - - v q * + P * ,  P : u + h - - g o - - m - - c o O s / O t - - e w ' V C o ,  

(3) 
! * W v Ocl/Ot = D~Acl - -  w VCl,  = d R ' / a t ,  

where the quantities with the asterisk depend on the conditional means exactly as do the 
analogous quantities without the asterisks depend on the appropriate condition-free means. 

' da/dt are considered as parameters. Differentiation in (3) is realized with res- Here w ,, 
pect to r = R-- R'. 

The fundamental difficulties occurring in the solution of the problem of a trial par- 
ticle and in subsequent calculations are associated with the complex form of the first equa- 
tion in (3) upon substitution of the necessary representations for the terms in the right 
side. A substantial simplification can be achieved by using the strong inequality a ~ 
that is the necessary condition for applicability of continual methods to the description 
of transfer in heterogeneous media, and assuming in addition that the time scale of the func- 
tion a(t, R) is much greater than the characteristic relaxation times of the diffusion and 
phase transformation processes under consideration. 

The change in the fields co*, ci* that have the linear scale a as time elapses is asso- 
ciated firstly with the variability of the field c o characterized by the scale ~, and second- 
ly with the motion of the surface a(t, R') of the trial particle. If this surface were 
fixed then the order equalities 13c0"/8t[ ~ 18cl*/St I ~ !8c0/8t I would be satisfied. Now 
iSc0/3tl ~ Dc/~ 2 follows from the first equation of (i), where D and c are the characteris- 
tic values of the diffusion and concentration coefficients. At the same time IVq*l ~ Dc/a 2. 
Therefore 

s IOc~/Ot] a z [Oc~/Otl O a ~ 

Ivq*] l 2 ' Da[Ac~[ D1 l z 

from which it follows that a change of the conditional fields related to the variability of 
the condition-free fields with time cannot be taken into account if infinitesimals of the 
order of a2/s 2 are neglected in the analysis. 

The diffusion relaxation times of the concentration near and in the trial particle are 
of the order of the quantities a2/D, a2/Dl and the relaxation times characterizing the phase 
transformation can be written as a/k0, a/kz, where k 0 and k z are constants of the exchange 
process rates on the interphasal separation surfaces introduced rigorously below. Let 

1 dlna << 1 max { D D~ ko 'kl} 
"C a - d t  T a z ' a 2 ' a a 

i.e., T/~ a <I. i. It is clear than by neglecting terms on the order of T2/z~the change in 
the conditional fields due to motion of the trial particle surface is described by the rela- 
tionships 

aco aa  aCo 0cl aa  ac~ 
--0-{- : ~ d t  a a  ' " a t  = a--T- ' a a  ' ( 4 )  

where co* and ci* are considered dependent on a as a parameter. These expressions determine 
the left side in (3) in the approximation under consideration. 

The terms in the right sides of the first equations in (i) and (3) can be considered in 
the same approximation as algebraic quantities and not functionals. As follows from general 
considerations of the kind utilized in [4-6] and is also confirmed by results obtained below, 
the following structural formulas are valid 
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q = - -  DVC o - -  G (c (1) - -  Co) VP, P = K (c (2) - -  Co) - -  Fwvc0 - -  Hc(a)wvP, ( 5 )  

where c(J), quantities independent of c o to be identified later, and D, G, K, Y and H are 
certain coefficients dependent on p, which should be evaluated a posteriori from (5) ex- 
pressing the self-consistency condition in the case when expressions for q and p determined 
in conformity with (2) and (3) are used in their left sides. Neglecting infinitesimals of 
order a2/s 2, we obtain from (5) 

- -  vq* = D ( 1  -l- vDrVO) Ac~ --}- D b v o v c  o , 

p* = sZD(1 + vKrvP ) (c (2) - -  c ; )  F w ' v c  ~ - -  Hc(a)w'vp,  ( 6 )  

O l n D  O l n K  G K 
O D -- , v K -- - - ,  b=----+v~, sS=-- 

Op 09 K D ' 

where all the coefficients of co* and its derivatives introduced in the expressions for Vq* 
and p* as well as w' are determined at the point R' occupied by the center of the trial par- 
ticle, and should be considered as constant parameters in solving the problem of the pertur- 
bations it induces (for simplification, the primes in the notation for these quantities as 
well as for a', da'/dt are omitted). 

At a distance from the trial particle the field c0*(t, t[R') should approach the field 
c0(t, R) asymptotically, from which we obtain the accuracy assumed 

c~l~ | --~ c~ -[- E 'r ,  c~ = Co - -  Er, E'  : E, ( 7 ) 

c; Ic0 (< ~ ')  ' E tvc0(t, ~ ' )  ' 

w h e r e  c 0 '  and  E '  a r e  a l s o  c o n s i d e r e d  c o n s t a n t s  ifi  t h e  t r i a l  p a r t i c l e  p r o b l e m .  

B o u n d a r y  c o n d i t i o n s  c o n n e c t i n g  t h e  e x t e r n a l  and  i n t e r n a l  s o l u t i o n s  whose  mode i s  d i c t a -  
t e d  by  t h e  t r a n s f o r m a t i o n  p r o c e e d i n g  i n  i t  s h o u l d  b e  s a t i s f i e d  on t h e  t r i a l  p a r t i c l e  s u r -  
f a c e .  I f  t h e r e  a r e  no c h e m i c a l  r e a c t i o n s  r e s u l t i n g  i n  a b s o r p t i o n  o r  e m i s s i o n  o f  d i f f u s i n g  
atoms or molecules on the surface, and their exchange kinetics between the phase volumes 
and the surface layer separating these phases and being simulated by the surface mentioned 
corresponds to first order reactions, then the boundary conditions can be written in the 
form 

Dn'vc; + (wn' + da/dt) c" * o = koco  - -  k~oF,  

- -  D l n ' v c  ~ - -  (wn'  + da/dt) c~ =- k~c~ - -  ks~F, 

a-2d (a2F)/dt = koC* o + klC~ -- (kso q- ksl) F, r = a 

(8) 

(for the particular case of a fixed surface these conditions, that are obvious balance re- 
lationships, were discussed in [8]). 

The characteristic microscopic build-up time for local thermodynamic equilibrium in the 
surface layer and directly nearby should be much less than the macroscopic time scales of 
the mass transfer and phase transformation processes. Then the quantity dF/dt in (8) can 
be neglected while the surface concentration F can be considered as a physical characteristic 
of the system under investigation that depends on the temperature and the pressure. Conse- 
quently, under isothermal-isobaric conditions this quantity as well as the equilibrium con- 
centrations of the substance in the phase volumes, introduced formally by the relationships 

c , :  = (k~j/kj) F, j = O, 1, ( 9 )  

can also be considered as constants. The quantities (9) are connected by the relationship 
c,l = ~c,0 to the distribution coefficient ~ = k0ksl/klks0. 

The relationships presented are sufficient for a correct formu2ation of the trial par- 
ticle problem in the approximation under consideration, where it i~ easy to see that this 
problem is actually split into two, whose successive solution permits finding first ci* and 
then c0*. We have from (3), (4), (8), and (9) 

46 



�9 w �9 1 Oa 0ci =0 ,  0 ~ r < a ;  c 1<co ,  r : 0 ;  Acz ~ v e l - -  D 1 0 t  "Oa 

Dln' vc  ~ + (wn' -]- da/dt) c~ - -  kt (c,~ - -  c~) = O, r = a. (io 

Introducing the new unknown function 

(t, rlR') = c~ (t, rlR') - -  Co (t, R), 
we obtain from (3), (4) and (6)-(9) by taking account of the smallness of vDrV p 
as compared with one: 

F I ~ da &p A~p+ bv9 D w vq~--s ~(1-+-vrV9 )rp =0,  
/ D dt Oa 

~3 = U K - -  U D , r > a ; q~--+0, r-+oo; 

q~ C,o-- Co E ' r+a(c ,1  c~)+ 2y da 
= -- __ C,l , 

ako dt 

kl kl 
q = - - ,  "f-- , r =  a. 

ko kst 

(ii 

(at r = a) 

(12 

The remaining unused boundary condition (the first in (8)) takes the following form 
when (9) is taken into account 

Dn'v(c~ + E : r - 6 ~ ) + ( w n ' + d a / d t ) ( c ~  + E ' r + ~ ) + k o ( c , o - - c ~ - - E ' r - - ~ ) = O ,  r - - a  (13 

and determines the rate of change of the radius and velocity of diffusion motion of the par- 
ticle. 

It is convenient to solve the equations in (I0) and (12) by the small parameter method 
by using the fact that the relative order of the terms with gradients therein equals a/~ 
while the terms containing da/dt are of order ~/~a" Consequently, the solutions are ex- 
pressed in the form of series in powers of the mentioned small parameters, where in con- 
nection with the assumptions made in deriving the equations, only terms containing these 
parameters in the zeroth or first degree have physical meaning. Special linear problems 
that are easily solved in quadratures follow for the coefficients of these terms from (i0) 
and (12). However, appropriate formulas turn out to be quite awkward, consequently, for 
simplification we here limit ourselves to the solution of the problem for just the first 
terms of the series mentioned. Consequently, we obtain from (i0) to the accuracy assumed 

c ~ = A + B w r ,  A klc,1 
k~ -}- da/dt 

A 

D 1 -[- a (k~ + da/dt) 

Analogously we have from (12) 

__C*J (1-+--~-)--~-](ra----)  l cp= C,o--C 0-k- 

where Ka(x) is the Macdonald function. j- - 

~r  1 d a )  
k 1 dl c,1, 

akl 

(1%- ~)D I D1 

(14) 

:2K'/"(sr)- [ E' oc,~. w](a)  ~/2Ks/2(sr)" 
K1/s(S a) -}-an' - -  + (1 +~,)D1 -}- K3/2(-~ [15) 

Let us first examine the corollary of (13). Substituting ~ from (15) therein, we see 
that in the approximation under consideration the left and right sides are the sum of com- 
ponents proportional to the first two spherical harmonics. Separating these harmonics, we 
obtain two equations governing the rate of change of the radius and velocity of diffusion 
motion of a particle with center at the point R'. Omitting the primes in the notation co', 
E' and n' we arrive at analogous relationships for the quantities mentioned that refer to a 
particle with center at the point R. The solution of the first equation yields with the 
accuracy taken here 

d a - - k o D  ( l + s a ) ( c * ~ 1 7 6  o = ( 1  ~ - 2 ? )  
dt a k o ( c , o - - C ~ l ) - - ( l + s a )  Dc~I ' c ' 1  ' a c,t. (16) 
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Hence, conditions can be obtained at once that should be imposed on the physical char- 
acteristics of the system in order to assure satisfaction of the inequality ~a ~ ~ needed 
for the quasistationary theory being developed. For instance, in the limit diffusion mode 
when D ~ ak0, required for this is .c,0 - c0J ~ Jc,0 - c,~J, while in the limit ~inetic 
mode (D ~ ak 0) there is necessary Ic,0 - c01 ~ c,i. For the majority of solid metal dis- 
persions these inequalities are satisfied [I, 2]. 

We obtain by analogous means for the rate of particle diffusion motion from (13) and (15) 

sZa z ac, l 2 -+- D ~ ako D ( 17 ) w = - - W E ,  W =  3 + 1-+-sa c,o ( l+~a)D1 l + s a  

(within the framework of the approximation being realized here the quadratic terms in a and 
dw/dt are neglected). Let us note that (16) and (17) depend only on the two coefficients D 
and K (s ~ = K/D) introduced in (6). 

3. In conformity with the noted program let us now utilize the results obtained to cal- 
culate the integrals figuring in (2). In connection with the approximateness of the calcula- 
tion of the fields ~, ci* here it is meaningful to take account just of the principal terms 
of the representations for the integrals mentioned. In particular, as can be shown, the co- 
efficient in the integrands to be determined at the point R' must be replaced by their values 
at the point R, which permits extracting these coefficients outside the integral sign. The 
quantities co', E' in the determination of ~ according to (15) are expressed in terms of c o 
and E in conformity with (7). As a result of the calculations we first obtain by neglecting 

quadratic terms in w and da/dt: 

dp 
go = c , 0 - ~  

d9 , g l = c , t  ~ ,  m = = u = O ,  

dp [ vc~dlt' pc,~ h = (C,o - -  c , h  - d r '  ~ - w, IR,!RI<a (1 -[- ~1) O l  

r , (1 + ~) c,~ do da 
1 (Co--C~)n'dR'= 9 (1 + [goD, W, : 4 a a  z . . . .  n, 

IR,_~RI=~ dt dt 

(18) 

where da/dt and w are expressed in terms of c o and E = /Vc 0 in conformity with (16) and (17). 
On the basis of (2) and (18), we have for the flux q 

q = _ _ [ e D o .  ~ pc, xW ] [ I d a )  ] ( I+~j)D (qDo~'D1) VCo--Do (1 c,l--Co VP (19) 
kl dt 

(he r e  t he  e x p r e s s i o n  fo r  c 1 ob ta ined  by t ak ing  the  average  of  c1" in (14) over  t he  v o l ~ e  
of the trial particle), W is defined in (17). 

From (2) and (18) we obtain for the quantity p introduced in (3) 

p=--(c , l - -co)dp/dt--cowVp--ewvc o. (20) 

As has been remarked above in connec t ion  wi th  (16) ,  t he  c o n c e n t r a t i o n  co should d i f f e r  
from i t s  e q u i l i b r i ~  va lue  c,0 by a q u a n t i t y  whose r a t i o  to  [c,0 - c,11 or Ca1 has t he  or -  
der  of the infinitesimal ~/T a. Consequently, within the limits of the accuracy under consi- 
deration c o in (20) can be replaced by c,0. Expression - (c,i - c,0)dp/dt in conformity 
with (16) and (18), we finally obtain 

3p(l+sa)a-lko 
p =  ~ _ ( l + s a )  (C,o--Co)--C, oWVp--~wvcO, (21) 

where we have introduced the parameters 

ako 2ym ( 2 , )  c,1 - ~ ,  v = l - - - - , ~ =  1 +  ' m, ~ = -  (22) 
~ :  D a a C,o--C,l 

Comparison of the expressions for q and p in (19) and (21)'with the representations for 
these quantities introduced in (5), results in the equalities 

( 1  da ) c ( 2 ) = c ( a )  G Do, F=e ,  H = I  (23) o (1) = cx :: . . 1  k I d~ 0*1' : C*0' : 

and D:xDo,  K:yZ(D/a~)=xyZ(Do/aZ). (24) 
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Let us write these equations in the form 

9(a+• (3+_g2__~___){ 1+o) a [ ( 2 + - -  
"Y,, (1 -]-- [~1) ] "~ V (0 z ( l " - ~ l )  

1} -1 l + b '  x-k- ~o x =  l - - p ,  

3p[3 o (1 -+- t.tj)] , [~o ak~ D~ 
x92= Vf3o/X -- .~ (1 -{- y) : --D-~o ' • = ~ D o  

(25) 

The expression for W from (17) and the definitions of the different physical parameters 
introduced above were taken into account here. 

The results obtained are completely adequate for the formulation of a closed system of 
equations which, in the continual approximation, simultaneously describe the kinetics of the 
phase transformation and the mass transfer in solid dispersions with the accuracy taken here. 
Let us note first that the second equation of (i) is transformed into an identity; it must 
evidently be replaced by an equation for c I that follows directly from (14). The two other 
equations are obtained from the first equation of (i) and from (17) by using the formulas 
obtained above. Consequently, we have the following closed system of continual equations 
for the unknowns Co, cl, and p: 

0Co _ _  (C,o-- c,1) 09 + c,lwvP =: V [DVCo + Do (ca-- Co) VP], 
(1 - p) - ~  ot 

(26 )  
c, (1 aK C,o --  Co ) Op C,o-- Co 

= - -  c ,1 ,  ~ + w v P = K  
3pk~ C,o- -  c,~ C,o--C,~ 

where D and K are functions of p to be determined from the solution of (25), while the rate 
w of particle diffusion motion is expressed in (17). It was taken into account in the left 
side of the first equation in (26) that the quantity c o in the coefficient for 3p/St can be 
replaced by c,0 without loss of accuracy of the theory. 

Equations (26) that are linear in c o and c I but substantially nonlinear in 9 can be uti- 
lized to solve a broad circle of mass transfer problems in solid dispersions that accompany 
phase transformations. A macroscopic inhomogeneity of the dispersion, due to an inhomoge- 
neity in the particle radius is allowed here, where the vector 79 ~ Va is not absolutely col- 
linear to Vc 0 ~ w. the inhomogeneity results, in particular, in the occurrence of an addi- 
tional component of the effective diffusion flux directed along Vp. 

Because of the appearance of a significant number of diverse physical parameters in the 
theory and the possibility, in principle, of realizing substantially different modes in 
practice, a detailed investigation of the equations and relationships obtained must be con- 
sidered as an independent problem. Nevertheless, a number of important deductions concern- 
ing the determination Of domains of approximate validity and clarification of the disadvan- 
tages of existing models even at the stage of the investigation achieved in this paper. For 
instance, in the overwhelming majority of models traditionally being proposed for the ana- 
lysis of phase transformations in metallic disperse systems, it is assumed a priori that the 
concentration of the diffusing substance within inclusions agrees with the equilibrium value 
[1-3]. From (14) and (23) it is easy to consider that this assumption results in inaccu- 
racies on the order of magnitude of da/dt whose evaluation is one of the fundamental final 
aims of the models mentioned. 

The most substantial disadvantage of the developed theory is utilization of a sufficient- 
ly rough approximation to solve the trial particle problem. It can be expected that taking 
account of the next corrections to this approximation, and a correspondingly more accurate 
calculation of the integrals in (2) will result in the long run in a certain correction of 
the formulas and equations obtained above. Consequently, determination of such corrections 
and the refinements associated therewith of the domain of validity in the space of physical 
and modal parameters should be considered one of the nearest aims of further investigation. 

NOTATION 

a, particle radius; c, concentration; D, diffusion coefficient; E, concentration gradi- 
ent; k, exchange reaction rate constants; ~, linear scale of the mean fields; n, numerical 
particle concentration; n, n', unit vectors of the normals; Q, q, detailed and mean fluxes; 
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R, spatial coordinates; R', radius vector of the center of the trial particle; V, detailed 
velocity; t, time; w, particle diffusion motion velocity; ~, distribution factor; ~, ak0/D; 
$i, aki/Di; F, surface concentration; 6 i, infinitesimals introducedin the definition of the 
structural functions ei; e = 1 - p; p, particle volume concentration; T, %a, time scales; 9, 
concentration perturbation near the trial particle; the asterisk superscript denotes condi- 
tional means, and the subscript denotes equilibrium values of the concentration; the prime 
refers to quantities to be determined at the point R', while the subscripts 0 and 1 refer to 
the continuous and disperse phases, respectively. 
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HETEROGENEOUS MASS-TRANSFER KINETICS UNDER 

DIFFUSION-CONTROLLED CONDITIONS 

V. N. Mankevich and V. G. Markov UDC 536.24:536.423:532.72:541.8 

Calculations have been performed on nonisothermal mass transfer with transport 
characteristics dependent on temperature: velocity, concentration, temperature, 
and mass-transfer coefficient distributions. 

Topics in hydrodynamics and in heat and mass transfer are frequently handled on the 
assumption that the parameters representing the physical properties are constant, whereas 
in fact they are often dependent on temperature, so that assumption is justified only when 
the system is completely or nearly isothermal. If the system is essentially non isother- 
mal, parameters characterizing the physical properties such as the viscosity may vary by 
substantial factors, and it is essential to incorporate the temperature dependence. How- 
ever, then there can be considerable computational difficulties, whereas the corresponding 
isothermal treatment involves a simple analytic formula. Therefore, engineering calcula- 
tions are commonly based on correcting for the nonisothermal situation by formal substitu- 
tion into the theoretical formula for the isothermal case of an effective temperature, which 
is chosen either from rather arbitrary assumptions or from the condition that the numerical 
result agrees with experiment [i]. 

That technique sometimes gives useful results, but it has the essential disadvantage of 
lacking a physical basis. A basis can be provided only by solving the nonisothermal case 
for a sufficiently wide range of external conditions, which is considered here. 

We consider the convective mass transfer from a certain substance (reagent) to a solid 
surface, at which there is a reaction involving the absorption of it, with the reagent dis- 
solved in the surrounding liquid. The flow is taken as laminar and stationary, while the 
transport mechanism is diffusion-limited, so the concentration at the surface can be taken 
as zero. An example is provided by a rotating disk as commonly used in electrochemistry 
[2]. 
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